Chilli 2nd batch

6 weeks old seedlings.

For this second batch of chilli planting, I sowed 3 types of chilli, which are cili besar (big type), cili geronong (type of habanero) and cili padi (bird eye chilli). Previous chilli trees which I brought together when we moved in last time were already dried up and dead. Also because I planted them along the gate wall, so its harder to clear up the weeds & bugs like to live there and damage the chilli fruit.

When the seedlings were 8 weeks old, I transplanted 9 cili besar, 9 bird eye chilli and 7 cili geronong to the soil at our house backyard. While the remaining I sent to village as requested by my mother in-law, to be planted around the house there.

First row, all cili geronong.
Bird eye chilli in second row (right) and third row (left) mixed with cili besar.
Fourth row all cili besar.
Last month, when the chilli trees already 3 months old and started to grow taller, I stake them by using bamboo at each end of the row and loosely tie them up using string.
Interweave the string across the stem to provide enough support from strong winds.

This month the plants are 4 months old, and they started producing fruits.

Currently only have 5 cili geronong trees (2 are still small), 6 bird eye chilli and 8 cili besar.
Cili besar is a type of chilli that produce a large number of fruits in large sizes, especially this particular tree, even though its not as tall as others, it still produce fruits.

I found that the soil quality affect the growth of the plant. Soil around the above chilli plant area is quite hard and don’t absorb water well (clay-like soil). The root can’t penetrate deeper into the soil & can’t get enough aeration to assist nutrient absorption. Chilli needs well-drained media such as coco peat or top soil mixed with compost, so that the root can uptake the nutrient while the media is draining or drying up. If it’s wet constantly, then the root might become rotted.

This cili geronong is coming from the same seed as the first batch, where they produce fruits which are bigger than store-bought chilli.

Here also I found that chilli plant that exposed to maximum sunlight will produce hotter & spicier fruit. We always used about a quarter of the cili geronong in our cooking, since the spicy fragrant & taste is very strong.

Lowland Strawberry

We got this strawberry plant from my mother, and at that time it already have a few stalks or runners which can be used to propagate the plant. My wife is the one that take care of them, together with other potted plants.

Bought a few pots to grow the runners. During this time the mother plant only grow large leaves.

A few tips we learned on how to grow strawberry:

  • Soil must be well-drained – not too wet and didn’t dry out too quickly, cocopeat is most suitable. Currently we used top soil with some compost, to ensure well aerated root.
  • Water lightly – only water when the top of soil is dry. Don’t expose directly to rain, we place the plants where they receive only sprinkle of rainwater.
  • Using organic fertilizer such as chicken manure is good, but for us it attracts pests or insects to the soil. Better to use low NPK fertilizer (e.g 12:12:12)
  • Only need 6 hours of sunlight. We placed the plants where they received only morning sunlight, so that they won’t overheat.
  • Keep number of leaves low, at most 9 leaves, as from my understanding, most nutrient will be used by those leaves instead of producing fruit.
This is the second ripe fruit. The first one was from the mother plant, and it was larger than this, about the normal size (~1 inch).
Current location of the plants. We plan to propagate more strawberry plants for sale.
Taste a bit sour. To prevent it become sour, one tip I read is to reduce watering when the fruit is going to ripe.

Aquaponics book & build materials

2 weeks ago I ordered a free copy of The Aquaponics God Manual book, where I only need to pay for shipping cost, and yesterday I received not only one, but three (!) copies of the book. You may order yours here.

The Aquaponics God Manual book

Since the progress of building the aquaponics is quite slow, so for now I’ll just cover on the materials I’ll be using to build the set & where I got them.

1×2 timbers, from a hardware store near junction to Taman Malihah.
3.6mm plywood, ½ inch PVC pipe & 2 inch UPVC pipe, from the same hardware store as timber above.
(Left lower) 2000 L/hr water pump and air compressor, from a pet store in Matang. (Right) 20 gallon pail from super store at Genesis Parade
1 inch styrofoam boards, from a stationary shop at Tabuan
1000 liters fish tank, from a hardware shop near Jalan Sekama

There are a few stuff missing, such as pond liner, garden netting, pipe fittings, electrical wiring & water test kits. Currently it is still in progress so I’ll update when the system is ready for test run.

Chicken brooder and grazing box

There’s a new batch of chicks hatched last 2 weeks, and I’m going to build a chicken brooder for them. It’s basically a smaller coop which used to grow chicks until they reach around 2 months old before being released into the bigger coop and get mixed with existing chicken.

Chicken brooder.

I build it using left over materials from various sources. I recycled the pallet wood from the electric grid construction in the village, garden mesh from the extra I have after covering the house gate, and the netting is the one I created last time in Penang to use to cover the apartment window, but never finished it.

The watering cups I have extra from last time and also another (smaller) feeder.
Light bulb to provide heat at night.

To install the brooder watering cups with the existing waterer, I use a hose splitter to split the water flow. I also moved the watering cups inside the coop to be near the door, to ease the clean up process – every week these cups need to be cleaned because it got some dirts in it.

Split flow. Hen outside there is the mother for the new chicks.
I put the brooder high above the ground to prevent it become wet when got raining.

Grazing box is just a box filled with grass but covered with wire mesh to prevent chicken from scratching the grass, which purpose is to provide leafy greens food for the chicken.

Also made of recycled pallet wood.
I brought some grass from our house, but they are a bit too long. Should have used smaller grass, plant it inside the coop and then cover it with the box.

Aquaponics set design & plan

There are a few factors that attract me into aquaponics, and I like it mostly because of the fact that I can harvest both fishes and vegetables from a single system. When doing conventional farming, I can only do planting, and it requires back-breaking work, from creating the patches, transplanting, fertilizing, weed control, pest control until harvesting. There are a lot of energy and time to put into it, but not enough outcome to be sold commercially.

So for this aquaponics set, I’ve been learning about it for a few months from The School of Aquaponics Youtube channel. In this channel, the instructor focuses a lot on UVI method, where I can summarize it as, to focus on feed to grow area ratio: amount of feed to be given to the fish is 3% of total fish body weight when they are fingerling, up to 60-100g per day per square meter (g/day/m2) of grow area when the fishes are grown up, with optimum fish stocking density of 60 kg per cubic meter of water (kg/m3).

My aquaponics set design

There are a few other types of grow area, such as NFT (nutrient film technique) and media-filled grow bed, but I choose DWC (deep water culture) since it is the easiest to use and results in high yield. This DWC will be 1 feet deep, covered with netting to prevent pest and to reduce pesticide usage, and also for shade from excess sunlight. There are 3 DWC, each has size of 4 ft by 12 ft, and total of 144 ft2 or 13.5 m2. Each DWC will have 2 small air stone to increase dissolved oxygen in the water.

Fish tank that I’ll be using is a 1000 liter PVC tank, with maximum of 200 fishes, and feed rate of 900 g/day (for tilapia). To accomodate this high stocking density, I’ll have two medium size air stone inside it to supply dissolved oxygen. Pressurized water from pump inside the sump tank will be used to create circular flow inside the tank, where solid waste will gather in the middle, and I’ll use solid-lifting-overflow method to suck the waste out of the tank, into the solid filter.

For the solid filter, I’ll use a radial flow filter method, where water will flow upward then directed downward by some barrier which will settle the solid waste at the bottom of the bucket. I’ll add a drainage outlet to clean out the filter, and this waste later will be collected into mineralization tank. Water overflow from the solid filter go to bio filter tank.

This bio filter will serve multiple purpose. Primarily is for bio filtering activity, where bacteria will convert ammonia in the water into nitrate. Another is to further collect fine solid which couldn’t be filtered by solid filter. And lastly as a degassing component, which is to remove excess nitrogen, carbon dioxide or other harmful gas in the water. All these can be achieved by using trickle filter method.

Sump tank is the central, and the lowest point (in term of altitude) in the system, where all the water will be collected and distributed back. Here is where the 2000 liter per hour (L/h) water pump will be located. It also has overflow outlet, because the DWC will be exposed to rain and this allow the excess water to go outside.

Based on the diagram, the pressurized water line will be using ½ inch PVC pipe and gravity-fed water line will be using 2 inch UPVC pipe. I put a split flow from sump tank to fish tank and DWC units, and each inlet has valve for better water flow control and maintenance.

Mineralization tank is the only component that is separated from the system. Here, solid waste from solid filter will be collected here at least once a week, then it will be aerated to release the micronutrients, and then will be put back into the sump tank after 1 or 2 weeks.

Sytrofoam board design

For the styrofoam board design, I choose this design because it provides more holes than the simple rectangular design. I’ll have 6 of these styrofoam boards per DWC, so a total maximum of 648 plants can be planted and harvested at a time from this system – way more than what I can achieve when doing soil-based growing.

Regarding the growing schedule, when using soil, I could harvest the veggies after 8 weeks from germination, so by using aquaponics, hopefully I can half the duration, to 4 or 5 weeks. For germination, I plan to sow the seeds using wet tissues inside germination tray for 2 weeks, then transplant them to the DWC and by using sponge to hold it in the board holes – no net pot is used (to save cost).

There are a lot of rooms for improvement to be done, and I’m thinking about automation and operating it off-grid. Later on I plan to get automatic fish feeder, or maybe look into software-based solution using microcontroller such as Arduino or Raspberry Pi to automate the fish feeding process, measure water quality, and also to automate draining solid waste from filter into mineralization tank, and put it back into sump tank. In the future, I’m looking into setting up solar panel and backup battery to power the pumps and also the automation machines used later.

Building chicken coop – week 3

It’s been a week after all the chicks had been moved into this new coop and being fed manually. Today I’m going to install the automatic waterer and feeder. We already have water tank for harvesting rain, and I’m going to connect it to the waterer, and have one end to a valve, for our own usage.

Between the waterer cups, I used 10mm hose, and to connect it to the tank, I used 15mm hose. I bought 10 waterer cups, but decided to use only 5 first as trial. Since the chicks are still small, I put the board to allow them to reach the water inside the cup.
Connection to the tank.
They immediately knew that this is for their drinking water.
For the feeder, I implemented a simple system, where I used a transparent cylindrical plastic container, create some holes on the cap, attach it upside down to a plate, then put it in the coop, tied to a pillar, while placing it a bit high, to prevent the chicken from scratching the feed inside. I’m experimenting with 2 types of feed, corn-based and processed pellets, and still figuring out how long these 2 kg of feed will last.

With the waterer and feed system are installed, now the building process is done. Now I’m left with how to handle sick chicken. Currently I’m left with 16 chicks, and I found out at least 4 of them are sick. Based on traditional method, people used to keep tortoise inside chicken coop, and the water where the tortoise lives will become the cure for any chicken disease when they drink it. For commercial scale, I don’t think that’s feasible, as I need to take care of the tortoises and also their feed. Therefore I’ll try to look for some kind of chicken medicine or vaccine.

For this round, I plan to raise these chicken to become the parent. Maybe one rooster and 5 hens, only then I’ll start to sell them in bulk. It is estimated that these chicken will become adult in May, and able to produce offsprings by July or August. Therefore, I estimate around September, these ayam kampung will be ready to be sold.

Building chicken coop – week 2

A week after Chinese New Year holiday, continuing building the chicken coop. My plan was first, to install the wire mesh fence, then nail the woods to the pillar at ground level, part of the wood will be buried underground. This is to prevent chicken from scratching the soil and creating an escape hole.

Dig a small shallow trench to put the wood in.
I’ve nailed and glued some short woods to make up for the length of the coop.
Not enough wire mesh, I bought only 16 meters, RM8/meter at Emart Batu Kawa, which is quite expensive.

Then we went to Sebuyau, and I bought another 4 meters at RM5.50/meter, to complete the perimeter and for the door.

During afternoon break, our supervisor came to check on our progress 🙂 .

The next day:

Wire mesh had been attached to the door, and it had been installed to the frame, together with lock.
Ground wood also had been installed, wire mesh fence had been attached to the woods using stapler gun. I covered back the small trench and the ground wood with soil and compact it from the inside, preventing it from easily being scratched by the chicken.


For the top part, I used old fishing nets. I had to make sure the coop is all covered, to prevent the chicken from going out, and the predators from going in.
While working on this coop, there was incident where a monitor lizard entered the old coop and ate 5 of the chicks. That’s why I had to rush up to complete and move the remaining chicks into this new coop.
Total of 18 chicks in the coop. Next week going to continue with the waterer and feeding system installation.

Building chicken coop – week 1

During Chinese New Year holiday last month, I started building chicken coop for my ayam kampung (indigenous-breed chicken) project. My parent in laws were very kind to allow their old wooden house to be repurposed as chicken coop. Instead of building from scratch, I could reuse the pillar and roof of the house, and just build the fence and door to enter the coop.

This section of the house was the kitchen and toilet, after my father in law and I tore down the wall and floor.
View from east side of the house, only half way done.
Removed all the joist, all of them made from belian (Eusideroxylon zwageri), hardest wood in Borneo.
Started work from early morning, then continued to evening. Now finished installing frame for the door.
The next day, doing some clean up, keep aside woods that can be reused and burned those that already rotten. My father in law done rebuilt the wall and the door for the house. This old house is used as storage.
I prepared some woods for the fence and the door of the chicken coop. That’s it for the week, going to continue next week, installing the fence.
This is the poultry waterer that I’ll be using inside the chicken coop. Bought it online, as I couldn’t find it sold locally here.