Raised garden beds

Gathering materials and building raised garden beds:

Got these pallet wood from electric pole construction in the village.
At first I wanted to use only bamboo to build the raised garden beds, but it was quite hard to work with bamboo and its cylindrical shape.
Previously had some vegetable patches here so I level out the ground and clear out the area for the beds.
Made 6 square boxes, mixing wood and bamboo.
Install the boxes onto the ground.

Building the shade:

Bought six 1×1 6ft. woods to construct the posts for putting the shade above the raised beds.
Using leftover PVC pipe as the bar to put the shade on.
Tie the posts together with string, so that the shade can be secured into place above the raised beds area.
Installed the shade, check if the posts are planted straight into the ground, tighten the string and done!

Floating raft

These styrofoam boards are 1 inch thick, 2×4 feet in size, RM8.00 per piece.
Marking the holes, about 6 inches between them.
I drilled the hole manually by hand, using ½ inch PVC pipe.
Using pen knife, I made saw-like teeth on the pipe. Rotate the pipe slowly to get a clean cut circle.
One board done, it took around half an hour to complete it.
But it took a week to finish all these 18 boards. 😉

Aquaponics build materials & water test kits

Continuation from the previous materials list. These remaining materials were ordered online since I couldn’t find them sold here, and I simply don’t have time to go around the city to look for shop that sell them.

Pond liner, bought online from seller from China. When I asked around hardware shops, they don’t recognize what pond liner is, and they confused it with weedmat.
Garden mesh netting, also bought online from Chinese seller. However currently I haven’t decided on whether to use it on this aquaponics set, or will reuse it for another project.
K1 bio media. 1cm diameter, total 1 kg occupies 6 liters of volume. Using my 12 gallon pail as bio filter tank, this K1 media is a bit too little, should have bought about 4 to 5 kg of them.
Ammonia test kit. This is important for doing initial system cycle later.

System cycle is a process to be performed on new system, to ensure nitrifying bacteria are colonizing the system. I plan to cycle the system using fish, by lowering stocking density and feed rate, then I need to monitor ammonia level daily to ensure it doesn’t exceed dangerous level. This is to ensure enough nitrifying bacteria to grow to convert those ammonia into nitrate, and this process will continue for about one to two months.

pH meter (with buffer powder) and EC (electrical conductivity) meter.

Water pH is one of the most important parameter to monitor. Initially, the system water pH will be a bit high (7 – 8 pH), and over time, the pH should fluctuate around 6 – 7 pH. For EC meter, it’s not so useful for aquaponics, but I think perhaps in future I’ll try hydroponics or fertigation, and EC meter is very useful to measure the fertilizer solution.

Other water test kits that will be beneficial to have are dissolved oxygen meter, various nutrient test meter (to test important nutrient such nitrogen, phosphorus, potassium, calcium, magnesium etc.) and thermometer. All these water parameter data will be useful later to analyze effectiveness of the system.

Chilli 2nd batch

6 weeks old seedlings.

For this second batch of chilli planting, I sowed 3 types of chilli, which are cili besar (big type), cili geronong (type of habanero) and cili padi (bird eye chilli). Previous chilli trees which I brought together when we moved in last time were already dried up and dead. Also because I planted them along the gate wall, so its harder to clear up the weeds & bugs like to live there and damage the chilli fruit.

When the seedlings were 8 weeks old, I transplanted 9 cili besar, 9 bird eye chilli and 7 cili geronong to the soil at our house backyard. While the remaining I sent to village as requested by my mother in-law, to be planted around the house there.

First row, all cili geronong.
Bird eye chilli in second row (right) and third row (left) mixed with cili besar.
Fourth row all cili besar.
Last month, when the chilli trees already 3 months old and started to grow taller, I stake them by using bamboo at each end of the row and loosely tie them up using string.
Interweave the string across the stem to provide enough support from strong winds.

This month the plants are 4 months old, and they started producing fruits.

Currently only have 5 cili geronong trees (2 are still small), 6 bird eye chilli and 8 cili besar.
Cili besar is a type of chilli that produce a large number of fruits in large sizes, especially this particular tree, even though its not as tall as others, it still produce fruits.

I found that the soil quality affect the growth of the plant. Soil around the above chilli plant area is quite hard and don’t absorb water well (clay-like soil). The root can’t penetrate deeper into the soil & can’t get enough aeration to assist nutrient absorption. Chilli needs well-drained media such as coco peat or top soil mixed with compost, so that the root can uptake the nutrient while the media is draining or drying up. If it’s wet constantly, then the root might become rotted.

This cili geronong is coming from the same seed as the first batch, where they produce fruits which are bigger than store-bought chilli.

Here also I found that chilli plant that exposed to maximum sunlight will produce hotter & spicier fruit. We always used about a quarter of the cili geronong in our cooking, since the spicy fragrant & taste is very strong.

Lowland Strawberry

We got this strawberry plant from my mother, and at that time it already have a few stalks or runners which can be used to propagate the plant. My wife is the one that take care of them, together with other potted plants.

Bought a few pots to grow the runners. During this time the mother plant only grow large leaves.

A few tips we learned on how to grow strawberry:

  • Soil must be well-drained – not too wet and didn’t dry out too quickly, cocopeat is most suitable. Currently we used top soil with some compost, to ensure well aerated root.
  • Water lightly – only water when the top of soil is dry. Don’t expose directly to rain, we place the plants where they receive only sprinkle of rainwater.
  • Using organic fertilizer such as chicken manure is good, but for us it attracts pests or insects to the soil. Better to use low NPK fertilizer (e.g 12:12:12)
  • Only need 6 hours of sunlight. We placed the plants where they received only morning sunlight, so that they won’t overheat.
  • Keep number of leaves low, at most 9 leaves, as from my understanding, most nutrient will be used by those leaves instead of producing fruit.
This is the second ripe fruit. The first one was from the mother plant, and it was larger than this, about the normal size (~1 inch).
Current location of the plants. We plan to propagate more strawberry plants for sale.
Taste a bit sour. To prevent it become sour, one tip I read is to reduce watering when the fruit is going to ripe.

Aquaponics book & build materials

2 weeks ago I ordered a free copy of The Aquaponics God Manual book, where I only need to pay for shipping cost, and yesterday I received not only one, but three (!) copies of the book. You may order yours here.

The Aquaponics God Manual book

Since the progress of building the aquaponics is quite slow, so for now I’ll just cover on the materials I’ll be using to build the set & where I got them.

1×2 timbers, from a hardware store near junction to Taman Malihah.
3.6mm plywood, ½ inch PVC pipe & 2 inch UPVC pipe, from the same hardware store as timber above.
(Left lower) 2000 L/hr water pump and air compressor, from a pet store in Matang. (Right) 20 gallon pail from super store at Genesis Parade
1 inch styrofoam boards, from a stationary shop at Tabuan
1000 liters fish tank, from a hardware shop near Jalan Sekama

There are a few stuff missing, such as pond liner, garden netting, pipe fittings, electrical wiring & water test kits. Currently it is still in progress so I’ll update when the system is ready for test run.

Chicken brooder and grazing box

There’s a new batch of chicks hatched last 2 weeks, and I’m going to build a chicken brooder for them. It’s basically a smaller coop which used to grow chicks until they reach around 2 months old before being released into the bigger coop and get mixed with existing chicken.

Chicken brooder.

I build it using left over materials from various sources. I recycled the pallet wood from the electric grid construction in the village, garden mesh from the extra I have after covering the house gate, and the netting is the one I created last time in Penang to use to cover the apartment window, but never finished it.

The watering cups I have extra from last time and also another (smaller) feeder.
Light bulb to provide heat at night.

To install the brooder watering cups with the existing waterer, I use a hose splitter to split the water flow. I also moved the watering cups inside the coop to be near the door, to ease the clean up process – every week these cups need to be cleaned because it got some dirts in it.

Split flow. Hen outside there is the mother for the new chicks.
I put the brooder high above the ground to prevent it become wet when got raining.

Grazing box is just a box filled with grass but covered with wire mesh to prevent chicken from scratching the grass, which purpose is to provide leafy greens food for the chicken.

Also made of recycled pallet wood.
I brought some grass from our house, but they are a bit too long. Should have used smaller grass, plant it inside the coop and then cover it with the box.

Aquaponics set design & plan

There are a few factors that attract me into aquaponics, and I like it mostly because of the fact that I can harvest both fishes and vegetables from a single system. When doing conventional farming, I can only do planting, and it requires back-breaking work, from creating the patches, transplanting, fertilizing, weed control, pest control until harvesting. There are a lot of energy and time to put into it, but not enough outcome to be sold commercially.

So for this aquaponics set, I’ve been learning about it for a few months from The School of Aquaponics Youtube channel. In this channel, the instructor focuses a lot on UVI method, where I can summarize it as, to focus on feed to grow area ratio: amount of feed to be given to the fish is 3% of total fish body weight when they are fingerling, up to 60-100g per day per square meter (g/day/m2) of grow area when the fishes are grown up, with optimum fish stocking density of 60 kg per cubic meter of water (kg/m3).

My aquaponics set design

There are a few other types of grow area, such as NFT (nutrient film technique) and media-filled grow bed, but I choose DWC (deep water culture) since it is the easiest to use and results in high yield. This DWC will be 1 feet deep, covered with netting to prevent pest and to reduce pesticide usage, and also for shade from excess sunlight. There are 3 DWC, each has size of 4 ft by 12 ft, and total of 144 ft2 or 13.5 m2. Each DWC will have 2 small air stone to increase dissolved oxygen in the water.

Fish tank that I’ll be using is a 1000 liter PVC tank, with maximum of 200 fishes, and feed rate of 900 g/day (for tilapia). To accomodate this high stocking density, I’ll have two medium size air stone inside it to supply dissolved oxygen. Pressurized water from pump inside the sump tank will be used to create circular flow inside the tank, where solid waste will gather in the middle, and I’ll use solid-lifting-overflow method to suck the waste out of the tank, into the solid filter.

For the solid filter, I’ll use a radial flow filter method, where water will flow upward then directed downward by some barrier which will settle the solid waste at the bottom of the bucket. I’ll add a drainage outlet to clean out the filter, and this waste later will be collected into mineralization tank. Water overflow from the solid filter go to bio filter tank.

This bio filter will serve multiple purpose. Primarily is for bio filtering activity, where bacteria will convert ammonia in the water into nitrate. Another is to further collect fine solid which couldn’t be filtered by solid filter. And lastly as a degassing component, which is to remove excess nitrogen, carbon dioxide or other harmful gas in the water. All these can be achieved by using trickle filter method.

Sump tank is the central, and the lowest point (in term of altitude) in the system, where all the water will be collected and distributed back. Here is where the 2000 liter per hour (L/h) water pump will be located. It also has overflow outlet, because the DWC will be exposed to rain and this allow the excess water to go outside.

Based on the diagram, the pressurized water line will be using ½ inch PVC pipe and gravity-fed water line will be using 2 inch UPVC pipe. I put a split flow from sump tank to fish tank and DWC units, and each inlet has valve for better water flow control and maintenance.

Mineralization tank is the only component that is separated from the system. Here, solid waste from solid filter will be collected here at least once a week, then it will be aerated to release the micronutrients, and then will be put back into the sump tank after 1 or 2 weeks.

Sytrofoam board design

For the styrofoam board design, I choose this design because it provides more holes than the simple rectangular design. I’ll have 6 of these styrofoam boards per DWC, so a total maximum of 648 plants can be planted and harvested at a time from this system – way more than what I can achieve when doing soil-based growing.

Regarding the growing schedule, when using soil, I could harvest the veggies after 8 weeks from germination, so by using aquaponics, hopefully I can half the duration, to 4 or 5 weeks. For germination, I plan to sow the seeds using wet tissues inside germination tray for 2 weeks, then transplant them to the DWC and by using sponge to hold it in the board holes – no net pot is used (to save cost).

There are a lot of rooms for improvement to be done, and I’m thinking about automation and operating it off-grid. Later on I plan to get automatic fish feeder, or maybe look into software-based solution using microcontroller such as Arduino or Raspberry Pi to automate the fish feeding process, measure water quality, and also to automate draining solid waste from filter into mineralization tank, and put it back into sump tank. In the future, I’m looking into setting up solar panel and backup battery to power the pumps and also the automation machines used later.